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Abstract—1{he Mohr diagram can provide a simple constructional method for superposing various kinds of
deformation. Examples are given for superposed pure shears, and various combinations of pure shear, simple
shear and arca change. Construction methods are developed on a Mohr diagram for reciprocal stretch vs
rotation, which is actually a representation of the “backwards deformation” tensor, d. The superposition of a pure
shear or a simple shear on an carlier deformation follows clementary prineiples in Mohr space, enabling the total
deformation to be determined simply. More general deformations can be considered as a combination of
dilation. pure shear and simple shear (if body rotations are omitted). which are all amenable to the Mohr

construction method.

Although confined to problems of two-dimensional superposed deformation, this new method provides a
useful alternative to mathematical or computer-based methods to determine the effects of oblique superposition
of several deformations. The visual appeal of such graphical constructions should aid in the teaching and

understanding of detormation processes.

INTRODUCTION

The structure and tabric ot deformed rocks may com-
monly be the result of two or more detormations. A
theoretical analysis of the etfects of two superposed
deformations would normally be tackled mathemat-
ically by matrix multiplication (¢.g. Ramsay & Huber
1983, pp. 291-292). and probably solved by computer
methods. While this would be the best way of under-
taking a large number of calculations and achieving
greatest accuracy. such methods do not provide a visual
illustration of the processes of transforming one de-
formed state to another. As a consequence, mathemat-
ical methods may not be casy to incorporate into ele-
mentary teaching of deformation processes, or ofter an
casy route to determining the gecometrical consequences
of superposing two detormations. for a particular field-
based example. This paper presents a new method of
determining superposed deformations, using Mohr dia-
grams.

Mohr diagrams provide a family of graphical illus-
trations of tensors and their operations (see De Paor &
Means 1984). Although Mohr diagrams and circles are a
familiar tool of structural geology. the Mobhr diagram
which represents deformation is a more recent appli-
cation. It was first used in the geological literature by
Robin (1977) for infinitesimal detormation. and later
developed simultaneously by De Paor and Means for
finite strain and deformation (Mcans 1982, 1983, De
Paor 1983). These authors recognized that the srretch
tensor for two dimensions could be represented as a
Mohr circle (see also Chot & Hsti 1971), in which the
stretch and rotation of any linc are given by polar
coordinates. A similar representation of the defor-
mation tensor, D, which includes components of stretch
and rigid rotation (in general an asymmetric tensor), is
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an off-uxis Mohr diagram (De Paor 1983, Means 1983,
Passchier 1988). The deformation tensor, termed D in
this paper (after Means), is more precisely called the
position gradients tensor, and called F by some workers.

The Mohr diagram representation of the deformation
tensor has considerable potential for teaching principles
of strain and deformation (e.g. Means 1990, 1992). The
components of a deformation matrix are given by Carte-
sian coordinates of points on the Mohr circle, whereas
the stretch and rotation are given by the polar coordi-
nates. Two sign conventions are in current use (see De
Paor & Means 1984}, each having advantages for par-
ticular problems: compare Means (1992) and Simpson &
De Paor (1993). In the present paper, I am following a
“First Kind" of angular convention, where angles are
shown in their correct sense. This allows easy use of a
Mohr circle pole: that unique point on the circle to which
any other point can be joined, to reproduce the material
line represented by the point in its geographic orien-
tation (Cutler & Elliott 1983, Allison 1984, Treagus
1987).

Mohr diagrams for deformation have considerable
potential for solving geological problems graphically, as
recently illustrated by Passchier (1988, 1990a.b), Pass-
chier & Urai (1988), Treagus (1990), Wallis (1992) and
Simpson & De Paor (1993). The present paper will
demonstrate how such a Mohr diagram can be used to
determine superposed deformations, graphically. This
application is one of the tensor operations for Mohr
diagrams introduced in general terms by De Paor &
Means (1984).

The Mohr diagram for reciprocal deformation (‘back-
wards deformation’ tensor, d) will be used in this paper
(see also Treagus 1990). 1 consider this form of Mohr
diagram better suited to represent progressively de-
formed states in superposed deformation than the ‘for-
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wards deformation’ (D) diagram. However, the prin-
ciples followed are similar for cither form of Mohr
diagram, so users already familiar with the D diagram
might prefer this representation. The reciprocal (d)
diagram is equivalent to an upside-down form of the D
diagram, with a change of scale if there is area change
during deformation. (Sce De Paor & Means 1984, figs.
11 and 12, illustrating tensor inversion on a Mohr dia-
gram.) Similarly. users who prefer a Second Kind of
Mohr cir¢le convention (see De Paor & Means 1984.
Simpson & De Paor 1993) can casily reverse the sign
convention in the following diagrams. However, the
facility to use the Mohr circle pole for the deformed state
will then be less direct.

The reciprocal deformation Mohr diagram allows the
progressively deformed staie to be represented in terms
of reciprocal stretches. rotations and angles, and related
to real space via the Mohr cirele pole. The starting point
is a First Deformation. and its Mohr diagram in recipro-
cal form. A known Second Deformation 1s applied, and
critical points on the Firstcircle are transposed to make a
Mohr circle for the Combined Deformation. The pro-
cedures will be developed first for superposed pure
shears, and then for simple shear transformations and
more general superposed deformations.

SUPERPOSED PURE SHEAR

A common type of first detormation assumed for
rocks is an irrotational laver-parallel/normal defor-
mation, such as a compactional strain. or a layer-parallel
shortening. For this reason. it secems appropriate to
begin with a First Deformation which is a symmetric
stretch tensor. The simplest possible case—pure shear
with no arca change—will be considered first. It will be
shown later that the tfollowing procedures of two-
dimensional superposition witl work for anv First Defor-
mation.

Two superposed pure shears: the Mohr construction
method

Consider two oblique pure shears. as sketched in Fig.
1{a). The Mohr construction method developed here
requires the external coordinate axes, xy, x-. to be
chosen parallel to the principal axes of the Sceond pure
shear.

The chosen Firsi Deformation is represented on the
reciprocal Mohr diagram in Fig. [(b). In this example,
the first strain has principal stretches of .43 and 0.7, and
because this is cqual-area plane strain. the reciprocal
stretches are opposite and cquivalent. 'The muaterial lines
parallel to exterpal coordinate directions x; and x,
(through which the progressive deformation is being
viewed), at the end of the First Deformation, will be
called m and n throughout the paper. They become m',
n' after the supcrposed deformation increment. Ity
important in the folowing method not to confuse these
with material lines coincidentally paratlel to the external
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Fig. 1. General method of pure shear superposition. (a) shows the

sequence of deformation and strain, schematically. Pure shears 1 and 2
arc mutually oblique by 60°. (b) Reciprocal Mohr diagram (d) for the
First Deformation (1.43, 0.7), also showing m and n in geographic
space (dashed lines) by use of the Mohr circle pole. (¢) Mohr diagrams
for the two pure shears, showing how m and n can be transposed by
reciprocal stretching to m” and n’. Crosses mark the principal recipro-
cal stretches for the Sccond Deformation, and dotted lines show the
construction method. (d) The Combined Deformation cirele is con-
structed with diameter m’=n’. (¢) represents the strain ellipse for the
Combined Detormation. completing the sequence in (a). (See text for
fuller explanations.)

reference axes (x, x») in the final (combined) deformed
state. In this first example of superposed pure shears,
these lines correspond, but in later more general cases,
they do not. The Mohr circle pole in Fig. 1(b) allows m
and n to be represented in their geographic orientations
with respect to reference axes, xj, xz.

Points m and n will now be transformed by the pure
shear Second Deformation to their deformed equiva-
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lents. m’.n". The Second Deformationis shown by cirele
2, in Fig. 1(¢). In the present example. these principal
stretches are 2 and (.5 (again, cquivalent and opposite
reciprocal values). so the second increment is a greater
strain than the first. Material lines (m. n) parallel to
these principal axes will be stretched according to this
Second Deformation. The transtormation is rep-
resented on the Mohr diagram by applying the appropri-
ate reciprocal principal siretches by multiplication, to the
m and n rays. Neither rav rotates. The m ray s stretched
by 1/0.5 to point m'. and the nrayv by 1/2.0 ton” (Fig. lc}.
Points m and n can be stretched to m” and n” entirely by
construction, shown in Fig. 1(¢) by dotted lines. m and n
are joined to the umt-streteh point on the reference axis
(1.0}, and simiddar triangles constructed from the relevant
Second principal stretch points on the axis (crosses).
This removes the need for any arithmetic calculation,
although it may be less accurate.

By definition. for an irrotational pure shear incre-
ment. m" and n’ remain respectively parallel to the vy, xs
axes. so still mutually perpendicular: so they detine the
diameter ot the Combined Mohr cirele. The circle is thus
drawn. and its principal reciprocal stretches (S, and S-7)
identificd and measured. A ray drawn trom the origin to
the circle centre indicates the rotational component of
the deformation (). Tt has alrcady been noted that m’
remains parallef tox . and n’ to v henee. lines drawn in
these directions locate the new Mohr crrcle pole (Fig.
1d). This allows the Combined Deformation to be con-
structed as a strain ellipse in geographic space (Fig. le).
with the S, direction in space parallel to the S, '-pole line
on the Mohr diagram. Alternatively, the S, and S
directions can be located from their orientations to m’ or
n’ on the final Mohr circle, according to conventional
Mohr circle methods.

This example of two superposed pure shears is equiv-
alent to ‘multiplication by a diagonal tensor’. described
and illustrated in De Paor & Means (1984, fig. 11).
Other examples will now be given. using the graphical
method described above.

Other examples of superposed pure shear
/

Frgure 2 tllustrates the etfects of an cquivalent super-
posed strain in three ditferent orientations. The First
Detormation is identical to that in Fig. 1:1.¢. pure shear
with principal stretches 143 and 0.7, In this casc. the
Second Deformation 1s an equal strain increment. with
principal stretches (1.43.0.7) oriented at (a) 60°. (b) 45°
and (¢} 307 counterclockwise to the First stretch. The 661
case is the same orientation of superposed deformation
as shown in Fig. 1. although the Sceond Deformation is
less intense. In cach case in Fig. 2. the Combined
Deformation is constructed on a single Mohr diagram.

Itis clear that as the angle between the first and second
principal streteh directions decreases, the combined
deformation increases. In all cases. the combined defor-
mation is an off axis’ Mohr diagram. which immediately
illustrates that the product of two oblique pure shears
(each a symmetric detormation tensor) is an asymmetric
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Fig. 2. Twoobligue pure shears, of equal strain increment (1.43,0.7)

hut in ditferent relative orientations. (a) 60 orientation of principal
axes, (by 437 and (¢) 307 Construction method as shown in Fig. 1.

tensor with components of stretch plus rotation. The
rotational component is 5-7° for these three examples,
and is proportionally morce significant, where the two
deformations are strongly oblique. For any combination
ol two pure shears, such asillustrated in Fig. 2, there will
be a value of obliquity which gives rise to a maximum
rotation component, just as the two orientations of
coaxial superposition give rise to the maximum and
minimum stretch component.

The cffects of three different intensities of Second
Dceformation. in the same rclative orientation to the
First (43%). arc shown in Fig. 3 (circles A, B and C). The
construction method is the same as shown in Figs. 1 and
2. With increasing intensity of the Second Deformation,
the principal stretch directions tor the Combined Defor-
mation become quite closely aligned to the directions of
Sccond stretch.

Sitmple shear followed by pure shear

The principles of superposition of a pure shear paral-
lel to xy. o, (Fig. 1) can be applied to any First Defor-
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Combined circie, C

Fig. 3. Two 45%oblique pure shears. with three ditterent values ol
Second Deformation: A with principal reciprocal stretches of 125 and
0.8:B =143, 0.7: C = 2.0, 0.5, Case B s the same as shown in g,

2(b). Case Cis the same value of superposed pure shearas in Fig. 1L but

in a different orientation. Only the construction lines from Second S

arc shown (positioning m's). for simphcity. Method as in Fig. |

Combined Mohr circle for A small dashes: for B. dot-dashes: for €.
large dashes

mation. This will now be lustrated for a First simple
shear deformed by a Second pure shear (Fig. 4). The
First Deformation is chosen to be an equivalent strain to
the previous examples, tor casy comparison: however.
this was achicved by a simple shear parallel to x. with
angular shear, y» = 36, Figure 4(b)is thus the special “ott
axis’ Mohr diagram tor simple shear. The Sceond Detor-
mation has principal stretches ot 2.0 and 0.5 as in Fig. |

The pure shear transformations of points m. n o
m'. n’ follow the method deseribed carlier. and are
shown in Fig. 4(¢). The Combined Deformation cirele
(Fig. 4d). constructed as betore. crosses the reference
axis at m’ and the new pole: these are the directions of
zero total rotation. for this scequence of superposed
deformation. This example of a simple shear followed by
a pure shear with a principal direction parallel to the
shear direction. produces a charactenstic family of Mohr
circles which fall into De Paor’s (1983) class of “sub-
stmple-shear’. Comparison will be made. later, with the
inverse history: i.c. a combined deformation produced
by pure shear followed by simple shear.

SUPERPOSED SIMPLE SHEAR

Three types of simple-shear superposition will be
considered: pure shear followed by simple shear paralled
to one of the pure shear principal directions: pure shear
followed by oblique simple shear: and two oblique
simple shears. In all cases, the superposed simple shear
is parallel to x|, and as before. the construction depends
on the transposition of lines mand n. which were parallel
to x; and x> after the First Deformation. For such a
simple-shear transformation. m will neither streteh nor
rotate. as it is chosen as the direction of Second simple
shear. However, n will rotate by . the angle of shear,
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Fig. +. Construction for simple shear followed by pure shear. For full
explimation. see Fig. [ and text deseription. Note that (b) is the special
oft-axis” Mohr circle for simple shear.

and will also stretch. By simple trigonometry, the stretch
for the original shear-normal is found to be sec ¢, and so
the reciprocal stretch for n” will be cos . These laws of
simple shear transposition of m, n to m’, n’ form the
basis of the construction method in the following
cxamples. In summary, whercas pure shear trans-
position of m., n were two orthogonal stretches and no
rotations, simple shear requires no stretch or rotation
for m. and a stretch and rotation for n.

Equal-arca planc-strain cxamples will be used,
although this is not a requirement of the following
methods (except, by definition, for the case of two
simple shears).
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Fig. 5. Simple-shear superposition. ‘This s the speaal case of

Second simple shear parallel to an axis of o First pure shear (e.g. laver

parallel shortening followed by layer-parallel shearing). (¢1 shows the

n’ construction circle ased for transposition of n. See text for {ull
deseription

Pure shear followed by simple shear paraltel to a pure
shear axis

The First Deformation is chosen. as betore. 1o be an
irrotational pure shear with principal stretches 1.43.0.7
(Figs. 5a&b). The Second Deformation is a simple shear
of y = 1 (y = 45°). The properties of transposition of m.
n in the Second simple shear are set out in Fig. 3(¢).
Point m remains fixed. Point n has been defined above to
rotate by y (here 45°) . and needs to be muttiplied by the
Second reciprocal stretch of cos y. [t is tound that n
moves to n’ down the perpendicudar projection fromn to
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the new rav (¢}, From simple gcometry, all n’ points
for ditferent angles of shear are found to tall on a circular
are drawn with the diameter (n—origin) (Fig. 5c). This
allows n to be rotated and stretched by cos ¥, in one
simple construction. (This n” construction circle should
not be confused with a Mohr circle.)

m’ and n" are no longer mutually perpendicular, so do
not designate the diameter of the Combined circle
tunlike the pure-shear superposition examples). How-
ever, their geographical orientations are known from
the simple shear, which will allow the Mohr eircle pole to
be positioned for the Combined Deformation. For this
example. the n—n' hne represents the deformed orien-
tation ot i, and its intersection with the horizontal line
drawn trom m” marks the pole (Fig. 5d). So for this case,
the pole remains in its First Deformation position. Three
points. m’. n" and the pole, define a triangle (shaded in
Fig. 5d) which is transcribed by the Combined Mohr
circle. The circle can be constructed by the well-known
“bisected chord™ method, and the §, direction located
using the Mohr circle pole. Alternatively, S, can be
oriented by its angle tom” or n” on the Mohr circle. The
resultant detormation for this example (Figs. Sdé&e) is
very significantly Coff-axis’™

It is clear trom comparison with Fig. 4, that the
resultant Mohr diagram for pure shear followed by
simple shear is very like a simple shear followed by pure
shear. as would be expected (Coward & Kim 1981,
Sanderson 1982). The Combined circles both have the
property of crossing the reference axis at m' and the
pole.

As a history of layer-parallel shortening followed by
tayer-paraliel simple shear is commonly considered in
eeological deformation sequences. some other examples
will be brieflv investigated here. Figure 6 takes the First
Deformation as betfore (Fig. 5b). and shows Combined
Detormations for 15, 30, 45 and 607 of sinistrally or
dextrally superposed simple shear. With the revelation
i Frg. 5 that m and the pole will remain fixed points
during the simple-shear transposition, all that is needed
to determine the final circle is the n” point. which is given
by the n” construction circle. These sets of progressively
‘inflated” circles with increasing simple shear have
centres moving progressively “off-axis” along an ordinate
line from the centre of the First circle. The superposed
shear strain, . can be read from the point of intersection
of the ¢ rav on an ordinate “axis” drawn from the 1.0
(reciprocal streteh) point (Fig. 6).

Circles of the form shown in Figs. 4-6 would be
classified as “sub-simple-shear™ deformations (De Paor
1983). Tt follows that a deformation or reciprocal defor-
mation ot this tvpe can be tactorized into a pure shear
followed by a simple shear. without necessarily implying
this wus the deformation sequence. The ‘pure shear
fuctor” would be determined by the intersection points
on the reference axis, and the simple shear by the
mtersection of the n” construction cirele, as shown in
Fig. 6. This kind of factorization ts commonly used to
analvse geological deformation variations. and Mohr
diagram representations will be pursued in other work.



788

+
== Sinistral

| == Dextral

‘A Locus of circle centres

1.0
y laxis’
Fig. 6. Sct of Mohr circles for Combined Deformation of pure shear
{ollowed by simple shear. The n' construction circle (Ieft) provides the
yr scale. yoif required. can be read from the intersection of the g ray
with the ordinate at 1.0 (lubelled y axis). The solid-curve Mohr circle is
the First purce shear, and three different broken circles show super-
posed simple shear of = 157, 30” and 45° (crosses = circle centres).
For y» = 60°, only n” and the circle centre are shown. Note that all the
circle centres fall on the same ordinate. and pierce the horizontal axis
at the same two points (one being the pole).

Pure shear followed by simple shear oblique to the pure
shear axes

The method described above can be applied to a more
general casc of simple shear superposed upon an earlier
pure shear with 1ts principal axes oblique to x,. x> (Fig.
7). The First Deformation has the same value as the
previous examples (principal stretches 1.43 and 0.7). at
6(° counter-clockwise to x, x» (Fig. 7b). Points m and n
are identified, and drawn with respect to the Mohr circle
pole. The transposition shown in Fig. 7(c) is very similar
to the method in Fig. 5(¢). Point m stays fixed. but in this
case, does not lie on the abcissa. Point n’ falls on a circle
constructed from n to the origin, as betfore. but in this
case. the circle diameter is an inclined ray.

For this examplc, the Mohr circle pole does not
remain in the same place after the superposition. t is
determined by constructing n’ in its geographical orien-
tation (at angle y to the vertical in Fig. 7d), and finding
the intersection of this line with the horizontal line from
m'. The pole, and points m' and n’, again define a
triangle (shaded) which is contained by the Combined
Deformation circle. As betore, the circle centre is deter-
mined by the bisected chord method (sce construction
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Fig. 7. Simple-shear superposition oblique to the pure-shear axes.
Mcthod and notation close to that shown in Fig. 5: sce text for details.

lines. Fig. 7d), and the combined strain ellipse is con-
structed in real space using the pole (Fig. 7e).

Superposed simple shears

This example of two obliquely superposed simple
shears follows all the same principles of construction as
shown above. The First Deformation has the same strain
as in previous examples (1.43, 0.7), envisaged to have
occurred by a dextral simple shear with ¢ = 36°, at 30° to
x, (Fig. 8a). However, the Second Deformation is here
taken to be a sinistral simple shear (1 = 45°) parallel to
x;. Thus the First and Second strains are identical to
those in Figs. 5 and 7, but the directions differ.

The Combined Deformation determined in Fig. 8
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n’ construction
circle

Fig. 8. Two obliquc simple shears. The method follows the principles
shown in Figs. S and 7: see text for other details

follows the construction principles shown in Fig. 7, so
will not be repeated. The only significant difference is
the sinistral sense of the Second Deformation, which
causes n to move in the opposite sense to before, and 1o
cross the reference axis. The second simple shear is
sufficient to result in an overall sinistral sense of ro-
tational deformation.

GENERAL SUPERPOSED DEFORMATION

The methods of superposition developed in the pre-
ceding sections and Mohr diagrams. were classified into
two types of superposition: superposed pure shear, and
superposed simple shear. Examples for a First Defor-
mation of pure shear or simple shear served to illustrate
that the procedures could have been applied equally well
to any First Deformation. Can they also be applied to
any Second Deformation?
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To answer this, it is first necessary to recap on how the
transposition from one deformed state to another could
have been achieved so easily on the Mohr diagram. Both
the pure and simple shear superpositions depended on
viewing the deformation in terms of external axes
(xy.xp), with x; parallel either to a principal axes of
superposed pure shear in the material, or to the direc-
tion of superposed simple shear. In the former, we could
transform two lines by stretch and no rotation, so that
material lines m, n remained parallel to x;, x; after
stretching tom’, n’. In the latter, the transformation was
by zero stretch and rotation of m (parallel to x;), and a
simply defined stretch and rotation for n.

ln the case of a Second Deformation which is neither
pure shear nor simple shear, the principles of superposi-
tion and transposition will be more complex. Suppose
the Second Deformation were (in reciprocal form) rep-
resented by an off-axis Mohr diagram. such as any of the
combined deformations derived in the preceding fig-
ures. Such circles characterize sub-simple shear, or
generalized shear (see Simpson & De Paor 1993). They
have two points of zero rotation (the eigenvectors),
where the circle crosses the reference axis. From the
examples developedin Fig. 6, itis apparent that any such
deformation can be factorized into a pure shear on axes
given by these eigenvectors, and a simple shear. Thus, a
Second Deformation of this type could quite validly be
separated nto two operations: a pure shear factor,
tollowing the transposition procedures shown in Figs. 1-
4; and a simple shear transposition, according to the
procedures of Figs. 5-8.

It has becn stated already that no restrictions are
placed on the nature of the First Deformation. It follows
that any number of superpositions may be undertaken
by Mohr diagram methods, not just two deformations as
considered 1 previous examples. For multiple defor-
mation superpositions, after cach transposition of a
"First” by a *Second’, the *Combined’ state must be
renamed the First state, and the next increment called
the Second: and so on. The method is. of course,
restricted to two-dimensional problems. However, it
does not require plane strain. For non-plane-strain
cases, care must be taken not to cquate S; with S, (or
vice versal.

For a fuller understanding of the principles ot super-
position of a general deformation it 1s helpful to consider
the Second Deformation in both its ‘forwards’ and
‘backwards’ state (respectively, DD and d). Recall that all
the preceding methodology just used the reciprocal
Mohr diagram (d). For a general Second Deformation,
use of the D diagram as well (as in Fig. 9), allows
representation of stretches and rotations of material
lines in the undeformed state, which 1s the state of the
material at the end of the First Deformation. The
stretches and rotations for orthogonal material lines
(e.g. m. n) fall on the diagonal of the Second D circle,
signifying their 90° relationship. On the d diagram,
however. m and n are represented with respect to their
oricntations after the Second Deformation. so are gener-
ally no longer orthogonal. (This matter was side-tracked
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Fig. 9. General superposed detormation by Mohr construction. For
full description of procedures, see text. (a) First Deformation of 4o,
compactional strain. Matenal hine m here represents bedding. (b)
Second Deformation of sub-simple shear, in the “forwards” detor-
mation Mohr representation, D. Stretches and rotations shown for
m. n. (¢) Sccond Detormation of sub-simple shear: the “backwards’
deformation representation, d. Reciprocal stretches and rotations for
m. n given by m. @i, Triangles mark the positions of m and n from the
First Deformation in (a). transposed by the reciprocal stretches and
rotations (m. n) to m'. n". (d) m" and n" drawn in their geographic
positions. in order to determine the new pole. The Combined Detor-
mation Mohr circle is found which encloses the shaded triangle. as
before. (¢) Summary of the deformation sequence, showing the final
state, and the Second Deformation in terms of two components

in the simple shear examples such as Fig. 5. by using the
trigonometric transposition for n’.)

[t was noted in the Introduction that the D and d Mohr
diagrams have an inverse relationship. For equal-arca
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plane strain, ong is cxactly a “turned over’ version of the
other. For dilational deformation. however, there is a
linear scale change from one to the other.

The principles of gencral superposition are described
by means of the example in Fig. 9. This was chosen to be
geologically realistic. and so will illustrate how Mohr
diagrams might be used to determine more complex
results of deformation superposition in rocks. One prob-
lem with real cases is the choice of external axes through
which to view the deformation. As discussed by Simpson
& De Paor (1993) it may often be legitimate to fix one of
the axes to the rock: in their case, the edge of a shear
zonce: in the present example., a bedding-plane trace. If a
progressive deformation associated with folding were
represented this way. the x; direction would rotate with
rotating limbs, so the rotations recorded on the Mohr
diagram would omit this component. Bearing this in
mind. the sequence of deformation considered in Fig. 9
could be considered etther as a compaction followed by a
general deformation, according to the lowermost
sketeh: ora deformation sequence on a fold limb, where
the hmb rotations are omitted from the treatment.

The First Detormation in Fig. 9 1s a compaction of
40" with principal axes parallel to material lines, m, n
(with m here taken as the bedding trace). The First
Detormation, shown in the reciprocal Mohr diagram in
Fig. 9(ua). is thus a dilational pure shear. The Second
Detormation is chosen from the family of sub-simple-
shear (discussed earlier with reference to pure shear
followed by simple shear. and vice versa, and illustrated
in Fig. 3). It can be considered (Fig. Ye, stage 2) as a pure
shear plus a simple shear through angle «. Figure 9(b) is
the D Mohr diagram for the “forwards’ Second Defor-
mation. not used previously in this paper. As noted
above. 1t allows m and n to be represented as ‘unde-
formed” with respect to this Second Deformation, so
falling on the circle diameter. The stretches and ro-
tations of these material lines are shown. The reciprocal
Mohr diagram (d) for this same Sccond Deformation is
represented in Fig. 9(¢). [tis an equal-area deformation,
s0 this representation is an exact “turned over’ version of
Fig. 9(b). Points m and n in this diagram are dis-
tingwished by overbars. to show that these are the
positions of m and 0 after the Second Deformation. This
diagram is needed to read off the reciprocal stretches for
m and n. which ure then applied by multiplication to the
reciprocal stretches for the First Deformation given in
Fig. 9(a).

Comparison of Figs. 9 (b) & (c¢) shows the relationship
of undeformed and deformed states. For any material
linc. such as n, the two Mohr representations must show
the same value of rotation (a). Itis apparent, then. that
the two points where the « ray pierces the circle are the
stretch and reciprocal streteh for n. So any point, includ-
ing the Mohr circle pole, can be related in the unde-
formed and deformed representations (Figs. 9b&c) by
turning over the diagram, and moving to the opposite
ray picrcement point. For this reason, experienced
Mohr diagram users could. with care, work entirely with
d diagrams, and omit Fig. 9(b) from the sequence (or, as



Superposed deformations by Mohr construction

stated in the Introduction. work entirely with the D
diagram).

The transposition of m and n by the Sccond Detor-
mation is shown in Fig. 9(¢). mis defined not to rotate in
the present example. as explained above. Multiplication
by m moves the point m (bedding trace) tom’, (Asm is
at 1.O, mand m" are here equivalent.) n will rotate by «.
and stretch according to n. to become n'. Points m” and
n’ are replotted in Fig. 9(d). and drawn n their geo-
graphical oricntations (m” horizontal. and n” at « to
vertical). The new pole is thus positioned. and a triangle
produced (shaded). The Mohr circle for the Combined
Deformation (the total deformation) is drawn according
to the chord method. and the totad strain ellipse drawnin
real space (Fig. 9e). Note that this cllipse 1s smaller than
m all previous examples, becanse ot the initial arca loss
(compaction).

The summary sketch of this general deformation.
given in Fig. 9(c). separates the Second Detormation
increment of sub-simple-shear into two components. In
doing so. it illustrates how this example of a general
deformation could have been considered as t/irec super-
posed deformations: compaction, pure shear and simple
shear. This serves as a reminder that any deformation.
whether in two or three dimensions, can be tactorized
into components of dilation., simple shear and pure shear
(Ramsay & Huber 1983, p. 47)0 1t body rotations are
excluded.

CONCLUSIONS

(1) The effects of superposed detormations m two
dimensions can be constructed. using the Mohr diagram

for reciprocal streteh and rotation. a representation of

the “backwards deformation” tensor. d. The conventions
chosen allow the progressively deformed state to be
shown graphicallv. and (by usc of the Mohr cirele pole)
rclated to their geographic positions.

(2) Two special orthogonal material hines (points in
Mohr space) in the First detformed state. which are then
transposcd by the Second Deformation, are the kev to
determining the Combined Detormation.

{3) Purc-shear superposttion ot any carlier defor-
mation involves stretching the two points along their
rays. with zero ray rotation.

(4) Simple-shear superposition of anv cartier defor-
mation keeps onc point fixed. and the other moves by
stretch and rotation according to simple shear algebra.

(5) Combinations of superposed pure shear and sim-
ple shear. and vice versa. illustrate the potennal for
using Mohr circles for general shear (sub-simple-shear)
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for factorization into pure shear and simple shear com-
ponents.

(6) More complex superpositions of two or more
deformations are amenable to Mohr construction
methods. although the method is more difficult, particu-
larly if carried out exclusively on the d Mohr diagram (or
D diagram). For this reason, the preferred method uses
both forms of Mohr construction.
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