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Superposed deformations by Mohr construction 

SLJSAN H. rREAGUS 

Ahstracl- I hc Xlohr dt:tgt :tm can pro\ tde a Gmplc con~tructtonal method for superposing various kinds of 
dctormation t:\,tmplc\ ‘LIC’ gt\cti tor ~upcrpod pure shear\. and vartous combinations of pure shear. simple 
\hcnr and arc‘t change. r’onstructton methods are dc\clopcd on a Mohr dtagram for reciprocal stretch vs 
rotatttrn. whtch I\ actualI! ‘I rc~prcxntatton of the ‘backwards deformation tensor. d. The superposition of a pure 
sheat or it Gmptc \hcar on ‘tn cat IICI deformation follow clcmcntary principles tn Mohr space, enabling the total 
deformation 1~) hc detcrmtncd stnipl\ Marc gcncral dcformattons can be constdered as a combination of 
dtlation. pure \hc,tr and stmpl c‘ shcal (if txjd! rotattons arc omntcd). which arc all amenable to the Mohr 
c~m\tructton nicthtxi 

Although zonhncd to pr”hlcms ot tuo-dtmenwnat superposctl deformation. this new method provides a 
useful altcrnattvc to mathcmattcat or computer-based methods to dctermtnc the effects of oblique superposition 
ot w~cral tlelormatton\ I hc \tsu~l appeal of such graphical constructtons should aid in the teaching and 
tmderwldln~ of dctornl‘ltl~rn ,~,OCC\W\ 

INTKOI)1:CTlON 

The structure ant! fabric ot del‘c~rmed rocks may corn- 

manly be the result of two or more deformations. A 
theoretical analysis of the effects of two superposed 
deformations would normally be tackled mathemat- 
ically by matrix multiplication (e.g. Kamsay & Huber 

lY83. pp. 291-2Y2). xid probably solved by computer 
methods. While this would be the best way of under- 
taking a large number of calculations and achieving 
greatest accuracy. such methods do not provide a visual 
illustration ot the processes of transforming one de- 
formed state to another. As a consequence, mathemat- 
ical methods mav not be easy’ to incorporate into ele- 
mentary teaching of doformation processes. or offer an 
easy route to determining the gcomctt-ical consequences 
of superposing tvvo deformations. for a particular field- 
based example. This paper presents a new method of 
determining superposed deformattons. using Mohr dia- 
grams. 

Mohr diagrams provide a familv of graphical illus- 
trations of tensors and thetr opcr-attons (see De Paor & 
Means 1984). Although Mohr diagrams and circles arc a 
familiar tool of structural geology,. the Mohr diagram 
which represents dcjornwtiotz is a more recent appti- 
cation. It was first used in the geological literature by 
Robin (lY77) for intinitesimal &for-mation. and tatcr 
developed simultaneously tiv IIe Paor and Means tar 
finite strain and deformation (Means IYX2. 1983. De 
Paor IYX.?). These authors recognized that the strcwh 

tetzsor for two dimensions could bc represented as a 
Mohr circle (see also Choi N t-lsti IY71). in which the 
stretch and rotation of any line are given by polar 
coordinates. A similar representation of the riefor- 
mution terzscjr, I). vvhich includes components of stretch 
and rigid rotation (in general a11 asymmetric tensor). is 

an off-rrxis Bohr diugram (De Paor 19X3, Means 1983, 
Passchicr lYX8). The deformation tensor, termed D in 
thus paper (after Means), is more precisely called the 
positiorl gradients tensor. and called F by some workers. 

The Mohr diagram representation of the deformation 
tensor has considerable potential for teaching principles 
of strain and deformation (e.g. Means 1990, 1992). The 
components of a deformation matrix are given by Carte- 
sian coordinates of points on the Mohr circle, whereas 
the stretch and rotation are given by the polar coordi- 
nates. Two sign conventions are in current use (see De 
Paor & Means 1984). each having advantages for par- 
ticular problems: compare Means (19Y2) and Simpson & 
De Paor (lY93). In the present paper, I am following a 
‘First Kind’ of angular convention, where angles are 
shown in their correct sense. This allows easy use of a 
Mohr circle pole: that unique point on the circle to which 
any other point can be joined. to reproduce the material 
line represented by the point in its geographic orien- 
tation (Cutler & Elliott 1983. Allison 1984, Treagus 
lYX7). 

Mohr diagrams for deformation have considerable 
potential for solving geological problems graphically, as 
recently illustrated by Passchier (1988, 1990a,b), Pass- 
chier & Urai (1988). Treagus (1990), Wallis (1992) and 
Simpson & De Paor (1993). The present paper will 
demonstrate how such a Mohr diagram can be used to 
determine superposed deformations, graphically. This 
application is one of the tensor operations for Mohr 
diagrams introduced in general terms by De Paor & 
Means (lYX4). 

The Mohr dimgram for reciprocal deformation (‘back- 
wards deformation’ tensor, d) will be used in this paper 
(see also Treagus 1990). I consider this form of Mohr 
diagram better suited to represent progressively de- 
formed states in superposed deformation than the ‘for- 



784 S. H. TKEA(;US 

wards deformation’ (1)) diagram. lHowever. the prin- 
ciples followed are similar for tither form of Mohr 
diagram, so users already tamiliar with the D diagram 
might prefer this rcprcsentation. The reciprocal (d) 
diagram is equivalent to an upside-down form of the D 
diagram, wsith a change of scale if thcrc is area change 
during deformation. (SW 11~’ Paor K: Means 1984, tigs. 
11 and 13. illustrating tensor inversion on a Mohr dia- 
gram.) Similarly. users who prefer ;I Second Kind of 
Mohr circle cc)nvention (see Ik Paor K: Means 19X-l. 
Simpson Kc De Paor IW.3) can easily rcvcrse the sign 
con\~enti~m in the foll~nving diagrams. However, the 
facility to use the Mohrcirclc pole for the deformed state 
will then be less direct. 

The reciprocal deformation Mohr diagram allows the 
progrcssivcly tlrfklr-nlc~l .stclf~ to bc represcntcd in terms 
of reciprocal stretches. rotations and angles. and rclatcd 
to real space via the Mohr circle pole. The starting point 
is a First Drfbrttultiotz , and it4 Mohr- diagram in recipro- 
cal form. A known Sec,otztl DefOrttztrtion is applied, and 
critical points on the First circle arc transposed to make a 
Mohr circle for the ~‘ottzhitzc~d IkfiJtxzrrtiorz. The pro- 
cedures will bc developecl first for superposed pure 
shears, :~nd then t’or s~mplc shear tr~lnsformations :Ind 
more gcncral supcrposcd dctorni;ktions. 

S~PEKPOSED PC'RE: SHEAR 

A common t!pc ot first deformation assumcd tar 
rocks is an irrotational I;l!cl--parallelinormal defor- 
mation. such as ;I compactional strain. or a layer-parallel 
shortening. For this I-cason, iI 4ccnis appropriate to 
begin with ;I First Dctormation which is a symmetric 
stretch tensor. The simplest p~~ssihlc case-pure shear 
with no arca change~will bc consider-cd tit-at. It will be 
shown later that the t’ollou.ing procedul-cs of two- 
dimensional supcrpositlon will wet-k for anv First Ikfor- 
mation. 

C‘onsiclcr tuo oblique pure shc‘;lrs. as sketched in k-19. 
1( :I). The Mohr constr-uction method dcvelopcd her-e 
requires the external coordinate kxes, .\., , .I-:. to be 
chosen parallel to the pl.incipal LIX~S of the Second pure 
shear. 

The chosen Firsr Zkfor.ttzrrtiotr is I-cprcscnted on the 
reciprocal Mohr diagram in Fig. I(b). In this example. 
the tirst strain has principal stretches of I .-I3 and O.?. ;rnd 

because this is cclua-arca plunc strain. the reciprocal 
stretches arc opposite and cqui\ alent. The ttztrtcritrl lrtzc,s 

parallel to crternal co~irdinatc dil-actions x, and t-’ 
(through which the progr-cs\i\,e cletormation is being 
viewed). at the end ou the I’it-st Ikformation, will be 
called m and n throughout the ~x~pt’t-. The\ become m’. 
n’ after the supcrposcd dci’ot-mation increment. It is 
important in the i’ollo\vin, tr method not to confuse these 
with material lines coincidcntall~ par;ltlcl to the external 

(a) 
/ 

!  i 
--. 

I ( 

Two pure shears 

First deiormation 

S’ 

Combined deformatlon 

L-IF I. (icncral method of pure shear superpositv.m. (a) shows the 
quc’nc: ot dcformatlon and strain. schcmatlcally. Pure shears 1 and 2 
arc mutually ohliquc by 60”. (h) Rectprocal Mohr diagram (d) for the 
kir\t Deformation (I .3i, 0.7). also showing m and n in geographic 
\pacc (dashed hnes) by USC of the Mohr circle pole. (c) Mohr diagrams 
tor the two pure shears. showing how m and n can he transposed by 
rccIprocaI stretching to m’ and n’. Crossca mark the principal rccipro- 
cal stretchca for the Second Deformation, and dotted lines show the 
construction method. (d) The Combined Deformation circle is con- 
structed with dlamctcr m-n’. (c) reprcscnts the strain cllipsc for the 
~‘omhirrcd Dctormatlon. completing the sequence in (a). (SW text for 

fuller explanation+.) 

rcfcrcnce axes (xl. x1?) in the final (combined) deformed 
state. In this first example of superposed pure shears, 
these lines correspond, but in later more general cases, 
they do not. The Mohr circle pole in Fig. 1 (b) allows m 
and n to be represented in their geographic orientations 
with respect to reference axes, xl. x2. 

Points m and n will now be transformed by the pure 
shear Second Deformation to their deformed equiva- 
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lents. m’. n’. The Second Ikformation is shown by circle 

2, in Fig. I(c). In the pracnt example. these principal 

stretche\ are 2 and 0.5 (again. equivalent and opposite 

reciprocal vnlucs). so the second incrcmcnt is a greater 

strain than the first. Material line\ (m. n) parallel to 

these principal axes will be strctcheci according to thix 

Second Deformation. The transformation is rep- 

resented on the R/lohr diagram by applying the appropri- 

ate r-~~c~il,voc~rrlprir7l~lJ~Nl .slr.rft./~rs by multiplication. to the 

m and n rays. Nritl~rv rn!’ ~o~trtc~\. The m ray is stretched 

by 110.5 to point m’. and the n ra! b!, li2.0 to n’ (Fig. 1~). 

Points m and n can be stretched to m’ and n’ cntircly b! 

construction. shown in Fig. l(c) hv dotted lines. m and n 

are joined to the unit-stretch point on the reference axis 

(1 .O), and,tin7ilil~f~j[(/7glc~.\ ct)nqructcJ l’rtm the r-elevant 

Second principal stretch points on the asi> (crossa). 

This removes the need for an! arithmettc calculation. 

although it ma\, he less accurate. 

By dctinitio;i. for an irrotational pui-c \hc;ir inct-e- 

ment. m’ :rnd n’ rc‘main rc\pccti\,el! par;tllcl to the .vI, .I~ 

axcs. so still tnutuall!~ p~rl?endl~ular: \o thcv &line the 

diametcrofthe Ccmt~in~~J hlohriirclc. ‘l‘hc circle is thus 

dra\f,n, and its principal rkprocal \tt-ctchc\ (St’ and S?‘) 

idenliticd and nie;t~urcd. r\ ray drab31 from the orisin to 

the circle ccntrc inciicatci the rotational ~~~,mponrnt ot 

the deformation ((1)). It ha\ aIrcad) been noted that m’ 

remains parallel to.1 I. ad n’ to.1 ,: hcxncc. lines dt-ahn in 

these direction\ locate the nc\\ Jloht- c~tt-cic pole (Fig. 

Id). This ;IIIOU.S the (‘o~~rl~,rfctl Ik/our~r/rior~ to hc COJI- 
strutted as ii \traiti ellipse 111 seogt-:rphic space (Fig. le). 

with the S, tlircction in ~XICC parallel to the S, ‘-pole line 

on the Mohr diagram Xltcrn;lti\~el~. the S, and S, 

directions can he locatc‘if trotn Iticii.ort~nt;ttions to ni’ ot 

n’ on thd linal Mohr circle. ;tc’cot cling tcj c~~n\cntion;ll 

Mohr circle methods. 

Figure 2 illustrates the i’lfciis of an c‘tluiv;ilc‘nt bup~st-- 

posed strain in three\ diflct-t,nt orit‘ntatton\. I‘ht~ First 

Deformation is ickntical to th:it 111 Fig. I : I.c~. pure stic:tr 

with principal xtrcLchc\ I .-Li atid 11.7. In thi\ C;I~C. the 

Second Deformation is an (,i/~~d/ \f~//t ~~t(‘~vtv~tf. with 

principal \tt-etche\ ( I .43. 0.7) cjt-lctited at (;I) 60‘. (b) -IS- 

and (c) 3O”~ounterclocl\\ri~~ to the Ftr-\t \trctch. Tile h(i’ 

cast is the same orientation 01 \ttpcrpo\ccI deiormation 

as shown in Fig. I. although the Second [>efol-mation I\ 

less intense. In each c;i4c in kg. 7. the (.‘ombtncd 

Deformation is con\tructt‘d on ;I \ingle hlohr diagt-;im. 

It is clear that as the angle twl\\ccn the lir\t and second 

principal \tr-etch dir~Wion4 ilccrcasc\. the comtiinctl 

deformation incrc:t\es. In all c‘aw\. the cc~niliined cieio~ 

mation is iln ‘off axis‘ Mohr diagt-am. which inimcdiatcl\ 

illustrates that the pl.oduct <jt two ohtiquc purt‘ shear4 

(each ~1 syrntnctric del~~rmation tcnvjt.) i\ ;In as~trlmetric 

s, total 
a) 60° 

f 

b) 45’ 

. . 

CJ 3o” 

s, total 

f Combined 

4. ._ 
“’ .:’ L- 

Circle ,’ ,,,’ 

” 
2’ , 

tcnsot- v,?th components of stretch plus rotation. The 

rcjtational component is 5-7” for these three examples, 

and is l’r”l-““tionally tnorc significant. where the two 

detormations XC‘ strongly oblique. For any combination 

01 two pure shear>, such as illustrated in Fig. 2, there will 

tic ;I value of obliquitv which gives rise to :t maximum 

rotation component. just as the two orientations of 

coaxial \uprrposition give rise to the maximum and 

minimum stretch component. 

l‘hc cfft‘cts of three different intensities of Second 

Deformation. in the wme relative orientation to the 

k?r,t (JC’). arc shown in Fig. 3 (circles A. B and C), The 

constructton method is the same as shown in Figs. 1 and 

?. With increasing intensity of the Second Deformation, 

the principal stretch directions tar the Combined Defor- 

mation hccotnc quite ctosrly aligned to the directions of 

Sc>cond stretch. 

I‘he principles of superposition of a pure shear paral- 

ICI to .i, rI (Fig. I ) can he applied to any First Defor- 
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mation. This will IIOM tw iIlu\tratcd tar ;I Ftrst 4i1n~~lc 

shear deformed bq’ a Stxc~ntl pure 41c;lr (Fig. 4). I hc 
First Deformation is cho\cn to hc ~111 equivalent \traln to 
the previous examples. tor C;IS\ c~>mparix~n: ~oM.c\c‘I-. 
this was achicvcd hy ;I simple shear parallc-I to \, . Mlth 
angular shear, I+’ = 36”. Figure J( h) i\ thus the special ‘off 
axis’ Mohr diagram for simple shear. I‘he Second Dctcrr- 

mation has principal stretches ol’2.0 and 0.5. ;I\ in Fig. I. 
The pure shear transf~~rnlation4 c>l‘ pc>int\ m. n to 

m ’ . n’ follow the method dexrltx4 carliet-. and ;Irc 
shown in Fig. 3(c). The Comhincd Del‘orm;~ti~~n cirL.lc 
(Fig. -Id). constructed a\ hctorc. crosscs the refercncc 
axis at 111’ and the IICM’ pole: thc\c :II-C the direction\ ot 
zero total rotation. for thik ~~yucnc‘c of \uperpod 
deformation. This example ot ;I simple shear followed I>! 
a pure shear with a principal direction parallel to the 
shear direction. produces a characteristic familv of bl<Jhr 
circles which fall into De Paor‘s ( lW3) claa of ‘w1>- 

simple-shear’. Comparison Lvill t,c made. later. with the 
inverse history: i.c. ;I combined deic~rmation produ~~cd 
by pure shear foltowcd h!, simple shear. 

SCPERPOSED SIMP1.E: SHEAR 

Three types of simple-shear \upcrposltion will IW 
considered: pure shear tollowcd bk simple shear parallel 
to one of the pure sheal- principal direction\: put-c shc,;tr 
followed by oblique simple \hcar: and two oblicluc 
simple shears. In all cast’~, the \upcrpo\cd simple \hc,ar 
is parallel to x, . and 2s txfore. the construction dcpcnds 
on the transposition of line m and n. u hich were parallc’l 
to xI and x1 after the First Ikfc)r-mation. For \uch ;I 
simple-shear transform~ltit,n. m \sIII neither htt-etch IIOI- 
rotate. as it is chosen ;I\ the tiircctlon of Se~~nci simple 
shear. Howcvcr. II will Irotatc tl\, 1,‘. the angle of shcx:lr. 

a) Simple+pure she% 
.,T\ “8 * I 

b) Ftrst 

\o 

C) 

,’ 
,’ 

‘, 

/’ 
‘\ 

\ 
/ \ 

\ 

‘,Circle 2 
i \ 

and fill also stretch. By simple trigonometry, the stretch 
for the original shear-normal is found to be set qj, and so 
the reciprocal stretch for n’ will be cos ~1. These laws of 
simple shear transposition of m, n to m’, n’ form the 
ha\i\ of the construction method in the following 
cxamplcs. In summary, whereas pure shear trans- 
position of m. n were two orthogonal stretches and no 
rotations. simple shear requires no stretch or rotation 
for m. and a stretch and rotation for n. 

Equal-area plant-strain examples will be used. 
although this is not ;I requirement of the following 
methods (except, by definition, for the case of two 
Gmple shears). 
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/ t ttc IIN r;t\ ( -t y). From simple gcometr)‘. alI n’ points 

tor Jitfcrctit angles of shear arc found to fall on a circular 

.trc dr;twn \\tth the diameter (n-origin) (Fig. SC). This 

:rtloMs II to bc: rotated and stretched bv cos ~1. in one 

1tps 2 _~ ss 
x, 

[b) 
FlrSt 

Ld) Combined 

7s 
20 

*$‘* 

The First Defot-mation i4 choacn. ;I> twtorc. to tw at1 

irrotational pure shear with princtpal \tretcha I .4.3. 0.7 

(Figs. S&b). The Second Deformation is ;I Gtnple sheat 
of y = I (t/l = 45”). The propcrtics of transposition of m. 

II in the Second simple shear arc set out in Fig. 5(c). 

Point m rematns iixed. Point n has hccn detined above tcj 

rotate by ~1 (here 15”). and ned~ to hc multiplied b!, the 

Second reciprocal stretch of cus t/l. It is found that 11 

moves to n’ down the I”~,r~,c,rftlic.lr/trr-I,r.ojc,c,rioll from 11 to 

Gtnple cc)nxtruction. (This II’ constructi& circle should 

not he confused with ;I Mohr circle. ) 

III’ and II’ at-e no longer mutually pcrpetidicular. so do 

not &wgnatc the diameter of the Cotnbincd circle 

(unlike: the pure-shear superposition examples). How- 

c:vL*r, their geographical orientations are known from 

111~ ~~rnple \hcar. which will allow the Mohr circle pole to 

iv po\ittoncd for the C‘ombincd Deformation. For this 

c~~~tnplc. the 11~1’ lint rcprescnts the deformed orien- 

tatton OI II’. and its intersection with the horizontal line 

dt-a\\n ttont m’ marks the pole (Fig. 2d). So for this case, 

the pole remains in its First Deformation position. ‘Tht-cc 

points. III’. II’ and the pole, define a triangle (shaded in 

Fly. 5d) \\ hich i\ transcribed by the ~‘ombined Mohr 

~~t~,lt’. I‘he circle can be constructed by the well-known 

‘bi\cctcd chord’ method. and the S, direction located 

ti\iiig ttic Mohr circle pole. Alternatively, St can be 

oric‘ntcci 1~. its angle to m’ or n’ on the Bohr circle. The 

rc\ult;tnt detortnation for this cxatnplc (Figs. Sd&e) is 

~c1.i ~tgtiiii~at~tl~ ‘off-axis’. 

Ii i\ ~Ic;II- from compnrison with Fig. 5, that the 

trc~ultdtit 2Iohr diagram for pure 4hcar followed by 

\ttnptc \tlc;tt- is very like ;I Gtnptc shear followed by pure 

A~:II-. :I\ v.ould be cxpecttd (C’o\vard & Kim 19s I. 

C~~~tdctw~n I W?). The C’omhincd circles both have the 

pt.opct-t! ot crossing the rcfcrcncc axis at m and the 
poic‘ 

\\ ‘I tii\tot-y of layer-parallel shot-tcning followed by 

IX! cr-pat-atlci siniptc shear is conitii~~tily considered in 

*~c~olog~cal &tot-mation scqu~nccs. some other examples h 
\\ 111 tw t)rietI\ investigated het-e. Figut-c 6 takes the First 

I>c,tc,t-tn;tttc,t~ AS hcfore (Fig. 33). and shows Combined 

I)~t~~rtn;itt~~tis for t5. 30. 45 and h0‘ of sinistrally 01 

(Ic\tr;tll\ \upcrposcd stmple shear. With the revelation 

iii I-ig. 5 th,it tii and the pole will rc~tiiain fixed points 

~LII-trig the’ \itnplc-shear transposition. all that is needed 

to detcrtnrtte the tinal circle is the n’ point. which is given 

I?! t hc 11’ c,on\truction circle. ‘l’hese sets of progressively 

‘intl;tted’ ~~rclt’s \bith increasing simple shear have 

(Ctitt-c\ tiicl\.itig pi-ogressivclv ‘off-axis‘ along an ordinate 

lint Iron1 the centrc of the I%r\t circle. ‘The superposed 

\ttc;tt. \tt-ain, ;‘, can hc t-cad from the point of intersection 

ot the 1;’ t.;t\ on att ordinate ‘axis‘ drawn from the 1.0 

I rectpt-oval Ltrctch) point (Fig. 6). 

(‘ircIc\ ot the form shown in Fiq. 14 would be 

~la~stticd ;I< ‘\ub-sitnple+hear‘ deformations (De Paor 

i%h?i. It IoIIow~ that a deformation or reciprocal defor- 

tnattc~ti ot this type can bc factorircd into ;I pure shear 

lolto\ted ty ;I simple shear. without nrccssarily implying 

tht\ L+YI\ the detormation sequence. ‘l‘he ‘pure shear 

Iactor ~~oulcl he cietcrmiticd hy the intersection points 

011 the rc>tcreticc axis. anri the simple shear by the 

tntcrbcction 01 the 11’ construction circle, as shown in 

k-ig. h. I hi\ kind of factorization is commonly used to 
,tn;tt\sc gcotogical deformation variations. and Mohr 

~ltayr-am r~prc~cntattoris will hc pursued in other work. 
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The method described abo1.c can be applied to a more 
general cast of simple shear superposed upon an earlier 
pure shear with its principal :PXS oblique to xl. x2 (Fig. 

7). The First Deformation has the same value as the 
previous examples (principal stretches I .33 and 0.7). at 
60” counter-clockwise to I,. .I-? (Fig. 7b). Points m and n 
are identified, and drawn with respect to the Bohr circle 
pole. The transposition shown in Fig. 7(c) is very similar 
to the method in Fig. 5(c). Point m stays fixed. but in this 
case. doe5 not lie on the abcisxa. Point n’ falls on a circle 
constructed from n to the origin. as before. but in this 
case. the circle diameter is an inclined ray. 

For this example. the Mohr circle pole does not 
remain in the same place acter the superposition. It is 
determined by constructing n’ in its geographical orien- 
tation (at angle I+’ to the vertical in Fig. 7d), and finding 
the intersection of this line with the horizontal line from 
m’. The pole, and points m’ and n’. again define a 
triangle (shaded) which is contained by the Combined 
Deformation circle. As before. the circle ccntre is deter- 
mined by the bisected chord method (SCC construction 

= ? [fig e] 

(b) 

I 
2.0 

(d) 

Flp. 7. Simpleshear superposition oblique to the put-c-shear axes. 
Mcthoti and notation close to that shown in Fig. 5: see text for details. 

lines. Fig. 7d), and the combined strain ellipse is con- 
structed in real space using the pole (Fig. 7e). 

Superposed simple shears 

l‘his example of two obliquely superposed simple 
shears follows all the same principles of construction as 
shown above. The First Deformation has the same strain 
as in previous examples (1.43, 0.7). envisaged to have 
occurred by a dextral simple shear with IJJ = 36”, at 30” to 
xl (Fig. 8a). However, the Second Deformation is here 
taken to be a sinistral simple shear (I/J = 4.5“) parallel to 
xl. Thus the First and Second strains are identical to 
those in Figs. 5 and 7, but the directions differ. 

l‘he Combined Deformation determined in Fig. 8 
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1 S’ 
20 

-._//’ 

n’ construction 

d) 

Fig. 8. Two oblique vmple thcars. The method follow\ the prlnclpk\ 
shown m Figs. 5 and 7: xc‘ ~CX[ for orher dctak 

follows the construction principles shown in Fig. 7, so 
will not be repeated. The only significant difference is 
the sin&al sense of the Second Deformation, which 
causes n to move in the opposite sense to before, and to 
cross the reference axis. The second simple shear is 
sufficient to result in an overall sinistral sense of ro- 
tational deformation. 

GENERAL SUPERPOSED DEFORMATION 

The methods of superposition developed in the pre- 
ceding sections and Mohr diagrams, were classified into 
two types of superposition: superposed pure shear, and 
superposed simple shear. Examples for a First Defor- 
mation of pure shear or simple shear served to illustrate 
that the procedures could have been applied equally well 
to any First Deformation. Can they also bc applied to 
any Second Deformation? 

To answer this, it is first necessary to recap on how the 
transposition from one deformed state to another could 
have been achieved so easily on the Mohr diagram. Both 
the pure and simple shear superpositions depended on 
viewing the deformation in terms of external axes 
(x, 1 x2), with x1 parallel rithrr to a principal axes of 
superposed pure shear in the material, or to the direc- 
tion of superposed simple shear. In the former, we could 
transform two lines by stretch and no rotation, so that 
material lines m, n remained parallel to xl. x2 after 
stretching to m’ . n’. In the latter, the transformation was 
by zero stretch and rotation of m (parallel to x,), and a 
simply detined stretch and rotation for n. 

In the case of a Second Deformation which is neither 
pure shear nor simple shear. the principles of superposi- 
tion and transposition will be more complex. Suppose 
the Second Deformation were (in reciprocal form) rep- 
resented by an off-axis Mohr diagram. such as any of the 
combined deformations derived in the preceding fig- 
ures. Such circles characterize sub-simple shear, or 
generalized shear (see Simpson Bi De Paor 1903). They 
have two points of zero rotation (the eigenvcctors), 
where the circle crosses the reference axis. From the 
examples developed in Fig. 6, it is apparent that any such 
deformation can be factorized into a pure shear on axes 
giLen by these eigcnvectors, and a simple shear. Thus, a 
Second Deformation of this type could quite validly be 
\cparatcd into two operations: a pure shear factor, 
following the transposition procedures shown in Figs. l- 
3: and a simple shear transposition, according to the 
procedures of Figs. 5-X. 

It has been stated already that no restrictions are 
placed on the nature of the First Deformation. It follows 
that an\ number of superpositions may be undertaken 
by Mohr diagram methods, not just two deformations as 
considered in previous examples. For multiple defor- 
mation superpositions. after each transposition of a 
‘First‘ by a ‘Second’, the ‘Combined’ state must be 
renamed the First state. and the next increment called 
the Second: and so on. The method is. of course, 
restricted to two-dimensional problems. However, it 
does not require plane strain. For non-plane-strain 
cases. care must bc taken not to equate S, with S2’ (or 
vice versa). 

For a fuller understanding of the principles of super- 
position ofo gozeral &formation, it is helpful to consider 
the Second Deformation in both its ‘forwards’ and 
‘backwards’ state (respectively, II and d). Recall that all 
the preceding methodology just used the reciprocal 
Mohr diagram (d). For a general Second Deformation, 
USC‘ of the D diagram as well (as in Fig. ‘9). allows 
rcprescntation of stretches and rotations of material 
lines in the undeformed state, which is the state of the 
material at the end of the First Deformation. The 
stretcheb and rotations for orthogonal material lines 
(e.g. m. II) fall on the diagonal of the Second D circle. 
signifying their ‘so” relationship. On the d diagram, 
however-. m and n are represented with respect to their 
orientations ufter the Second Deformation. so are gener- 
ally no longer orthogonal. (This matter was side-tracked 
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in the simple shear examples \uch as Fig. 5. by using the 

trigonometric transposition for n’.) 

It was noted in the Introduction that the D and d Moh~ 

diagrams have an inverse relationship. For equal-area 

plant strain. one is cxactl! a ‘turned over‘ version of the 

other. For dilational deformation. however, there is a 

linear scale change from one to the other. 

The principles of general superposition are described 

by means of the example in Fig. Y. This was chosen to be 

geologically realistic, and so will illustrate how Mohr 

diagrams might be used to determine more complex L 
results of deformation superposition in rocks. One prob- 

Icm with real cases is the choice of external axes through 

which to \,iew the deformation. As discussed by Simpson 

& t)e Paor ( I YY3). it may often be legitimate to fix one of 

the axe’s to the rock: in their case. the edge of a shear 

zone‘; in the prcscnt example. ;I bedding-plane trace. If a 

progre\sivc deformation associated with folding were 

repre\ented this way. the X, direction would rotate with 

rotating limbs, so the rotations recorded on the Mohr 

diagram would omit this component. Bearing this in 

mind. the sequence of deformation considered in Fig. Y 

could bc considered either as a compaction followed by a 

gcncral deformation. according to the lowermost 

sketch; or a deformation sequence on a fold limb, where 

the limb rotations arc omitted from the treatment. 

I hc First Deformation in Fig. 9 is a compaction of 

40”C, with principal axes parallel to material lines. m. n 

(with m here taken as the bedding trace). The First 

Dctolmation. shown in the reciprocal Mohr diagram in 

Fig Y(a). is thus a dilational pure shear. The Second 

Detormation is chosen from the family of sub-simple- 

\hcar (discussed earlier with reference to pure shear 

follo\ved by Gmplc shear. and vice versa. and illustrated 

in t;Ig. 3). It can be considered (Fig. Ye. stage 3) as a pure 

\hc;lr- plus a simple shear through angle u. Figure 9(b) is 

the 11 hlohr diagram for the ‘forwards’ Second Defor- 

marion. not used pl-eviously in this paper. As noted 

aho\ c. it allows m and n to be represented as ‘unde- 

form4 with respect to this Second Deformation, so 

falling on the circle diameter. The stretches and ro- 

tation\ of these material lines are shown. The reciprocal 

Mohr diagram (d) for this same Second Deformation is 

rcpr-cscntcd in Fig. Y(c). It is an equal-area deformation. 

so this reprcscntation is an exact ‘turned over’ version of 

Fig Y(b). Points m and n in this diagram arc dis- 

tinguished by overbars. to show that these are the 

poslticjns of iii and 5 rcjirr the Second Deformation. This 

diagram is needed to read off the reciprocal stretches for 

m and ii. which arc then applied by multiplication to the 

reciprocal stretches for the First Deformation given in 

Fig. Y(a). 

(‘ompal-ison of Figs. 9 (b) & (c) shows the relationship 

of undctormcd and dcformcd states. For any material 

line. such as II, the two Mohr representations must show 

the ~mc vatuc of rotation (~1). It is apparent, then, that 

the two points where the u ray pierces the circle are the 

stretch and reciprocal stretch for n. So any point, includ- 

ing the Mohr circle pole. can bc related in the unde- 

formed and deformed representations (Figs. Yb&c) by 

turning over the diagram, and moving to the opposite 

ra!’ picrccmcnt point. For this reason, experienced 

Mohr diagram users could, with care, work entirely with 

d diagrams. and omit Fig. Y(b) from the sequence (or, as 



SupLxrpohcd dctc)rm:tttc)ns t>!, Mohr construction 701 

stated in the Introductic~n. \\t)rk cntircxl\ with the I) 

diagram). 

The transposttton 01’ III and II 1~! tlw Second Detor- 

mation is shown in Fig. Y(c). m i\ dctinecl not to t-otatc in 

the present example, as espiainc~J ahovc. Multiplicati~~n 

by iii mo\w the point m (t~~iding tr-;rc~e) tc> m’. (As m i\ 

at I .O, iii anti m’ are here equi! alent. ) n will rotate I>! II. 

and stretch according to ii. to h~~comc II’ I’cjints m’ atld 

n’ are reptottcci in Fig. Y(d). and dr,twti in their- gee- 

gaphicat orientation\ (m horvontal. and n’ at (I to 

vertical). The new pole ih thux pcGttoncci. and ;I It-ianglc 

produced (rhaderi). The Mohr ctrclc tor the C‘ombinctl 

Deformation (the total ciefortnatton) 14 Llr;tM n accc~rtitng 

to the chord mcthotl. and the tcttal str,ltn c>tlip\c dra\vn in 

real space (Fig. Y,c>). Note that tht\ ~tlip>~ is vnaller than 

in all pre\ic>us examplc5. hec.:itt4c tit the tnittat arca 104k 

(compacfion). 

The sutnmar!’ sketch ot tht 4 grYlL~lal ii~tol-tllattc~tl. 

given in Fig. Y(c). vparatc\ the Scc.c)nA I)ctorm;ttion 

increment of’\uh-siiiil-rl~-\he;ir into t\rct cc~mponc~nt\. In 

doing W. it illustrate\ how thik c~~mplc ot ;I ~~cneral 
deformation coulcl ha\c hecn con\id<t-ctl ;I\ //Iw~. super- 

posed tieformatic~na: compai‘tic)ti. p111.c’ \tic;tt- xtici simple 

shear. Thi> scrvc:, as ;I rcmtntlcr that .in\ dcformatic~n. 

whether in two or three clit~lt~~lston~, c‘atl he tactot-i/cd 

into components of dilation. 4tiil’lc 4hc,;ii- ,ind piti-c \hcar 

(Rams! & Huhcr IWi. p. 47). tt hod! I-\)tattonx :II-c 

exctlldcd. 

for factc,rization into pure shear and simple shear com- 

ponent\. 

(bj M<~re complex superpositions of two or more 

deformations are amenable to Mohr construction 

methods, although the method is more difficult, particu- 

larly if carried out exclusively on the d Mohr diagram (or 
D diagram). For this reason. the preferred method uses 

both forms of Mohr construction. 


